SEMINAR NASIONAL PENDIDIKAN SAINS

"Peningkatan Kualitas Pembelajaran Sains dan Kompetensi Guru melalui Penelitian & Pengembangan dalam Menghadapi Tantangan Abad-21" Surakarta, 22 Oktober 2016

VARIASI NILAI BATAS AWAL PADA HASIL ITERASI PERPINDAHAN PANAS METODE *GAUSS-SEIDEL*

Imam Basuki¹, Cari², Suparmi³

¹ Mahasiswa Program Studi Ilmu Fisika Pascasarjana UNS, Surakarta, 57126

- ² Program Studi Ilmu Fisika Pascasarjana UNS, Surakarta, 57126
- ³ Program Studi Ilmu Fisika Pascasarjana UNS, Surakarta, 57126

Email Korespondensi: hitakayana2yb@gmail.com

Abstrak

Tujuan penelitian ini adalah mevariasi nilai batas awal pada penyelesaian iterasi metode Gauss Seidel untuk mengamati pola laju perambatan panas dilihat dari sebaran nilai eksaknya pada setiap node diskritisasi material ujinya. Penyelesaain persamaan keadaan panas yang digunakan menemukan nilai eksak menggunakan metode gauss-seidel dengan menerapkan metode beda hingga (finite difference method) yang menghasilkan iterasi dengan variasi nilai eksak yang menunjukkan pola sebaran panas menuju kesetimbangan termal material ujinya. Kesimpulan yang didapat pada penelitian ini adalah bahwa pola variasi nilai batas atau kondisi awal dari suatu material dengan menganggap nilai konduktivitasnya tetap pada kondisi yang steady nilai eksak yang terkecil berada pada node diskritisasi yang sama.

Kata Kunci: Nilai batas awal, Iterasi, Gauss-Seidel.

Pendahuluan

Laju rambatan panas pada berbagai bentuk geometri material mengikuti persamaan keadaan yang sajikan dalam bentuk persamaan matematis berupa persamaan differensial.

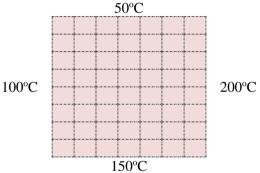
Metode penyelesaian model aliran atau rambatan panas pada suatu material dilakukan secara analitik dan numerik. Dimana penyelesaian secara analitik yaitu menggunakan perhitungan secara sistematis dan solusi yang diperoleh berupa nilai eksak.

Namun beberapa bentuk persamaan differensial, metode penyelesaian analitik mengalami kesulitan, sehingga metode numerik menjadi salah satu alternative dalam mengatasi kesulitan tersebut.

Metode numerik yang digunakan untuk menyelesaikan persamaan diferensial parsial antara lain adalah Metode Crank-Nicholson, Metode Milne, Metode Hamming dan Metode Gauss-Seidel. (Triatmodjo, 2002).

Sebagai bahan kajian dalam penelitian ini adalah laju aliran panas yang mengikuti model persamaan diferensial parsial yang diselesaikan menggunakan metode numeric Gauss-Seidel.

Bentuk benda uji yang dianalisa dalam penelitian ini disajikan dalam gambar 1 berikut ini:



Gambar 1. Model benda kerja plat logam dengan nilai konduktivitas tertentu dua dimensi dalam keadaan steady.

Berdasarkan gambar kerja di atas, maka dengan melalui metode Gauss Seidel dapat memperoleh penyelesaian dari persamaan diferensial parsial pada aliran panas pada plat logam dua dimensi dalam keadaan *steady* atau laju aliran panas sistem tidak berubah dengan waktu (konstan), maka suhu di titik manapun tidak berubah.

Berkaitan dengan itu tujuan penelitian ini adalah mevariasi nilai batas awal pada penyelesaian iterasi metode Gauss Seidel untuk mengamati bagaimana pola laju perambatan panas dilihat dari sebaran nilai eksaknya pada setiap node diskritisasi material ujinya.

Metode Penelitian

Penelitian ini merupakan penelitian analitik sehingga metode penelitian dipilih berupa langkah-langkah yang dilakukan untuk menyelesaikan adalah sebagai berikut :

- Kajian Pustaka Model Aliran Panas Pada Plat
- 2. Identifikasi Parameter
- 3. Diskritisasi Model
- 4. Menentukan Syarat Awal, Syarat Batas, dan Koefisien Relaksasi.
- 5. Menentukan solusi
- 6. Pembahasan Hasil

Hasil Penelitian dan Pembahasan

 Menentukan persamaan diferensial parsial yang akan diselesaikan, yaitu persamaan Poisson sebagai berikut:

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + g = 0$$

Dimana:

T: suhu x: absis y: koordinat $q(\Delta x^2)$

2. Menurunkan persamaan di atas dengan deret Taylor

Untuk menyelesaikan persamaan di atas, berarti menggunakan deret Taylor dengan dua variabel bebas T(x, y) yaitu dengan cara menambahkan variabel tambahan sehingga deret Taylor dengan dua variabel bebas T(x, y) menjadi:

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{q(\Delta x^2)}{k}$$

Untuk mendapatkan turunan kedua dapat dilakukan dengan cara sebagai berikut:

- Jika turunan pertama berupa diferensial maju, maka turunan kedua diselesaikan dalam bentuk diferensial mundur.
- 2. Jika turunan pertama berupa diferensial mundur, maka turunan kedua diselesaikan dalam bentuk diferensial maju.

Setelah diketahui turunan kedua fungsi *T* terhadap *x* dan *y*, kemudian disubstitusikan pada persamaan Poisson atau persamaan distribusi suhu, sehingga diperoleh:

$$\begin{split} &\frac{\left(\frac{T_{i+1,j}-T_{i,j}}{\Delta x}\right)-\left(\frac{T_{i,j}-T_{i-1,j}}{\Delta x}\right)}{\frac{\Delta x}{+\frac{\left(\frac{T_{i,j+1}-T_{i,j}}{\Delta y}\right)-\left(\frac{T_{i,j}-T_{i,j-1}}{\Delta y}\right)}{\Delta y}}=0 \end{split}$$

$$\frac{T_{i+1,j} - 2T_{i,j} + T_{i-1,j}}{\Delta x^2} + \frac{T_{i,j+1} - 2T_{i,j} + T_{i,j-1}}{\Delta x^2} + \frac{q}{k} = 0$$

Untuk ukuran Δx dan Δy yang sama, maka persamaan di atas disederhanakan menjadi:

$$T_{i+1,j} - 2T_{i,j} + T_{i-1,j} + T_{i,j+1} - 2T_{i,j} + T_{i,j-1} + \frac{q(\tilde{\Delta}x^2)}{k} = 0$$
atau

$$T_{i+1,j} + T_{i-1,j} + T_{i,j+1} + T_{i,j-1} - 4T_{i,j} + \frac{q(\Delta x^2)}{k} = 0$$

3. Mengkontruksi Persamaan Gauss Seidel Persamaan Gauss Seidel dikonstruksi dari persamaan (3.14) di atas menjadi:

$$T_{i,j} = \frac{T_{i+1,j} + T_{i-1,j} + T_{i,j+1} + T_{i,j-1} + \frac{q(\Delta x^2)}{k}}{4}$$

dan memecahkan secara iterasi untuk i = 1 sampai n dan j = 1 sampai m.

Secara umum, dari persamaan perambatan panas dengan q adalah laju pepindahan suhu, T adalah distribusi suhu pada jarak x dan y, yang mempunyai panjang L dan tinggi K. Oleh karena nilai T pada tepi plat diketahui suhunya (kondisi batas) dan pada saat sebelum perambatan, nilai pada titik-titik dalamnya adalah nol (kondisi awal) maka penyelesaian persamaan adalah menghitung T pada x dan y tertentu.

Untuk persamaan diferensial parsial

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{q(\Delta x^2)}{k} = 0$$

$$0 \le x \le L \ dan \ 0 \le y \le K$$

$$T(0, y) = 50$$

$$T(L, y) = 100$$

$$T(x, 0) = 150$$

$$T(x, K) = 100$$

diketahui:

 $\Delta x = 0.1$

 $\Delta y = 0.1$

q = 10000 Btu/hr ft

k = 40 Btu/hr ft

Untuk mengetahui solusi perambatan panas pada masing-masing titik dengan metode Gauss Seidel, dapat dilakukan dengan memecahkan secara iterasi untuk i=0 sampai n, dan j=1 sampai m.

Selanjutnya persamaan tersebut diselesaikan secara iterasi dengan persamaan *over-relaksasi*.

Parameter relaksasi dapat dicari menggunakan persamaan:

$$\omega = \frac{1}{1 + \left(\frac{0.1}{0.1}\right)^2} \left[\cos \frac{\pi}{m} + \left(\frac{\Delta x}{\Delta y}\right)^2 \cos \frac{\pi}{n} \right]$$

$$= \frac{1}{1 + \left(\frac{0.1}{0.1}\right)^2} \left[\cos \frac{3.14}{50} + \left(\frac{0.1}{0.1}\right)^2 \cos \frac{3.14}{50} \right] = 0.93$$

Maka, λ dapat dicari menggunakan persamaan sebagai berikut:

$$\lambda = \frac{2}{1 + \sqrt{1 - \omega^2}}$$

$$\lambda = \frac{2}{1 + \sqrt{1 - 0.93^2}} = 1.47 = 15$$

Untuk persamaan diferensial parsial:

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{q(\Delta x^2)}{k} = 0$$

$$0 \le x \le L \ dan \ 0 \le y \le K$$

menggunakan syarat batas dan koefisien relaksasi yang sama.

Selanjutnya diselesaikan secara iterasi untuk i = 1 sampai n dan j = 1 sampai m dengan persamaan over-relaksasi berikut:

$$T_{i,j}^{baru} = \lambda T_{i,j}^{baru} + (1 - \lambda) T_{i,j}^{lama}$$

Iterasi dapat dihentikan jika kesalahan relatifnya sudah mencapai batas yang disyaratkan.

Besarnya kesalahan relatif didefinisikan sebagai:

$$\left| (\varepsilon_a)_{i,j} \right| = \left| \frac{T_{i,j}^{baru} + T_{i,j}^{lama}}{T_{i,j}^{baru}} \right| \times 100\%$$

Solusi analitik yang didapat adalah sebagai berikut:

Pada kondisi awal atau Iterasi ke-0

Nilai nol di bawah ini merupakan nilai pada kondisi awal.

50	50	50	50	50	50	50	50	50
100	0	0	0	0	0	0	0	200
100	0	0	0	0	0	0	0	200
100	0	0	0	0	0	0	0	200
100	0	0	0	0	0	0	0	200
100	0	0	0	0	0	0	0	200
100	0	0	0	0	0	0	0	200
100	0	0	0	0	0	0	0	200
150	150	150	150	150	150	150	150	150

solusi pada Iterasi I dengan cara Gauss Seidel, maka pada titik $T_{i,j}$, dari persamaan (3.13) diperoleh:

$$T_{1,1} = \frac{T_{i+1,j} + T_{i-1,j} + T_{i,j+1} + T_{i,j-1} + \frac{q(\Delta x^2)}{k}}{4}$$

$$T_{1,1} = \frac{0 + 100 + 0 + 50 + \frac{10000 \times (0.1)^2}{40}}{4} = 37,75$$

dari persamaan over-relaksasi ($\lambda = 1.5$) diperoleh:

$$T_{1,1} = 1.5(37.75) + (1 - 1.5)0 = 56,625$$

Untuk $T_{2,1}$ diperoleh:

$$T_{2,1} = \frac{0 + 56.625 + 0 + 50 + 2.5}{4} = 26.906$$

dari persamaan over-relaksasi diperoleh:

$$T_{2,1} = 1.5(26.906) + (1 - 1.5)0 = 40.359$$

iterasi dilanjutkan sampai iterasi pada titik $T_{7,7}$ sehingga diperoleh nilai seperti di bawah ini.

Nilai Iterasi I distribusi suhu pada persamaan dengan nilai awal 50, 100, 150, 200 dengan $q = 10000 \ dan \ k = 40 \ yaitu:$

50	50	50	50	50	50	50	50	50
100	56,625	40,359	34,260	31,972	31,115	30,793	105,672	200
100	59,109	37,676	27,351	22,621	20,526	19,620	122,359	200
100	60,041	37,019	24,514	18,051	14,841	13,298	126,246	200
100	60,390	36,903	23,406	15,921	11,911	9,828	126,403	200
100	60,521	36,909	22,99	14,97	10,455	7,98	125,77	200
100	60,571	34,636	21,99	14,23	9,633	6,98	125,16	200
100	116,839	113,428	107,41	102,24	98,577	96,21	214,64	200
150	150	150	150	150	150	150	150	150

Dari nilai eksak yang diperoleh dapat digambarkan bahwa laju rambatan panas dilihat dari nilai eksak setiap node diskritisasinya menunjukkan pola sebaran dengan arah kesetimbangan menuju pada titik i=5 dan j=6.

Selanjutnya dengan memvariasi nilai batas yang berbeda dengan q dan k tetap dihasilkan sebagai berikut :

Nilai Iterasi I distribusi suhu pada persamaan dengan nilai awal 100, 200, 150, 50 dengan $a = 10000 \ dan \ k = 40 \ vaitu$:

100	100	100	100	100	100	100	100	100
200	112,875	80,203	67,951	63,357	61,634	60,988	79,495	50
200	117,703	74,590	53,828	44,319	40,107	38,286	63,293	50
200	119,514	73,164	47,997	34,994	28,538	25,434	52,398	50
200	120,193	72,884	45,705	30,637	22,566	18,375	45,665	50
200	120,447	72,874	44,84	28,68	19,592	14,61	41,73	50
200	120,543	68,449	42,86	27,20	17,923	12,58	39,49	50
200	176,829	148,604	128,42	114,98	106,465	101,27	128,16	50

Pola sebaran dengan arah kesetimbangan menuju pada titik i=6 dan i=6.

Nilai Iterasi I distribusi suhu pada persamaan dengan nilai awal 200, 150, 100, 50 dengan $a = 10000 \ dan \ k = 40 \ vaitu$:

200	200	200	200	200	200	200	200	200
150	131.625	124.734	122.150	121.181	120.818	120.682	139.381	50
150	105.984	86.895	78.767	75.356	73.940	73.358	98.902	50
150	96.369	69.099	55.825	49.568	46.690	45.393	73.236	50
150	92.763	61.073	44.212	35.542	31.212	29.102	57.502	50
150	91.411	57.557	38.54	28.16	22.638	19.78	48.10	50
150	90.904	79.720	44.72	27.70	19.253	15.01	42.79	50
150	128.214	115.850	98.09	85.05	76.988	72.37	99.81	50
100	100	100	100	100	100	100	100	100

Pola sebaran dengan arah kesetimbangan menuju pada titik i=6 dan j=6

Nilai Iterasi I distribusi suhu pada persamaan dengan nilai awal 200, 50, 100, 150 dengan

 $a = 10000 \, dan \, k = 40 \, \text{vaitu}$:

7 -							
200	200	200	200	200	200	200	200
94,125	110,672	116,877	119,204	120,076	120,404	176,776	150
54,422	62,285	67,561	70,412	71,808	72,454	150,087	150
39,533	38,557	40,169	41,843	42,994	43,668	129,283	150
33,950	27,565	25,775	25,732	26,147	26,556	115,065	150
31,856	22,658	18,54	16,98	16,546	16,54	105,98	150
31,071	57,178	28,77	17,53	13,153	11,51	100,68	150
68,277	84,921	80,51	74,64	70,797	68,74	157,66	150
100	100	100	100	100	100	100	100

Pola sebaran dengan arah kesetimbangan menuju pada titik i=6 dan j=6

Simpulan, Saran, dan Rekomendasi

Simpulan dari penelitian ini adalah bahwa pola variasi nilai batas atau kondisi awal dari suatu material dengan menganggap nilai konduktivitasnya tetap pada kondisi yang steady nilai eksak yang terkecil berada pada node diskritisasi yang sama. Hal ini menunjukkan bahwa nilai kesetimbangan termal cenderung berada pada daerah koordinat diskritisasi yang sama.

Rekomendasi untuk penelitian selanjutnya adalah dengan memvariasi kondisi awal yang lebih banyak serta menyertakan konduktivitas yang berbeda.

Daftar Pustaka

Culp, Archie, W. 1996. *Prinsip-Prinsip Konversi Energi*. Jakarta: Erlangga.

Edwin J. Purcell, Dale Varberg. Dkk. 1990. *Kalkulus dan Geometri Analitis*. Edisi Keempat. Jakarta: Erlangga.

Hidayat, Rusli. 2009. Persamaan Diferensial Parsial. Jember: UPT Penerbitan Universitas Jember.

Holman. 2002. *Heat Transfer*. Ninth Edition. USA: Mc. Graw Hill.

Institut Pertanian Bogor. *Metode Beda Hingga*. http://repository.ipb.ac.id/bitstream/h andle/123456789/10968/Bab%20III %202 008sur1.pdf?sequence=10. [6 oktober 2012].

Kreith, Frank dan Arko Prijono. 1997. *Prinsip-prinsip Perpindahan Panas*. Edisi Ketiga. Jakarta: Erlangga.

Kusumah, Yaya S. 1989. *Persamaan Diferensial*. Jakarta: Erlangga.

Setiawan, Agus. 2006. *Pengantar Metode Numerik*. Yogyakarta: Andi.

Suprapto, Edy. 2012. *Metode Numerik*. dreapacenkahait.files.wordpress.com/ 2012/06/metode-numerik.ppt. [10 November 2016].

Triatmojo, Bambang. 2002. *Metode Numerik Dilengkapi dengan Program Komputer*. Yogyakarta: Beta Offset.

Pertanyaan:

1) Terdapat penurunan suhu pada penelitian, Apakah terdapat uji-t agar dapat diketahui pengaruhnya?

Jawaban:

2) Belum Lengkap untuk pendataan statistikanya